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Abstract

The primate brain excels at transforming photons into knowledge. When
light strikes the back of the eye, opsin molecules within rods and cones
absorb photons, triggering a change in membrane potential. This energy
transfer initiates a cascade of neural events that endows us with useful
knowledge. This knowledge manifests as subjectively experienced percep-
tual interpretations and mostly pertains to the 3D structure of the visual
environment and the affordances of the objects within the scene. However,
some of this knowledge instead pertains to the quality of these interpre-
tations and contributes to our sense of confidence in perceptual decisions.
Because such confidence reflects knowledge about knowledge, psychologists
consider this the domain of metacognition. Here, we examine what is known
about the neuronal basis of perceptual decision confidence, with a focus on
vision. We review the crucial computational processes and neural opera-
tions that underlie and constrain the transformation of photons into visual
metacognition.
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INTRODUCTION

Humans and other animals operate in a world that cannot be known perfectly. Raw visual inputs
give rise to patterns of neural activity in the retina that by themselves are too coarse (Strasburger
et al. 2011), noisy (Croner et al. 1993), and indirect (Knill & Richards 1996) to unambiguously
reveal the state of the environment. It follows that perceptual interpretations of the world are the
brain’s best momentary guess, selected from a large set of candidate world states (von Helmholtz
1948, Knill & Richards 1996). A rich body of research has found that these interpretations arise
from computational strategies that are sophisticated (Glaze et al. 2015, Purcell & Kiani 2016),
flexible (Ernst & Banks 2002, Adams et al. 2004, Mlynarski & Hermundstad 2018, Norton
et al. 2019, Charlton et al. 2023), and principled (Weiss et al. 2002, Stocker & Simoncelli 2006,
Kilpatrick et al. 2019, Hahn & Wei 2024). Despite this, errors are inevitable. There simply exists
no scenario under which perception of a complex environment can consistently be error free.
Perceptual misjudgments are sometimes innocuous. For example, fruit in a faraway tree may
appear ripe from a distance, while closer inspection reveals that it is not. In this case, the cost
associated with the behavior guided by the perceptual misinterpretation (i.e., checking out the
tree to no avail) is limited. However, perceptual misjudgments can sometimes result in risky
behavior that is extremely costly. A car in the distance may appear to be slowing down, but if this
interpretation turns out to be wrong, the decision to cross the street could result in a collision.
As these examples illustrate, to accomplish goals, the brain needs to do more than just identify
the most plausible state of the environment. It also ought to keep track of the certainty of these
interpretations (von Helmholtz 1948, Knill & Pouget 2004, Pouget et al. 2016). And it does. This
process contributes to our sense of confidence in perceptual decisions. Although much of the
field has adopted a consensus definition of confidence as the subjective probability that a decision
is correct (Pouget et al. 2016), here we follow recent work that has shown that it is more accurate
to associate confidence with subjective decision reliability (Koriat 2012, Li & Ma 2020, Caziot
& Mamassian 2021, Boundy-Singer et al. 2023). In other words, confidence seems to reflect the
belief that we would make the same choice again, if we had to make the decision a second time.
Humans can be acutely aware of the confidence they have in a perceptual decision or propo-
sition. We experience noticeable doubt when we wonder whether we recognize a movie actor
or whether a handwritten digit is a 3 or an 8. This awareness enables us to communicate the
reliability of our judgments to others, which in turn can play a vital role in optimizing group
decision-making (Bahrami et al. 2010). The ability to verbalize perceptual confidence is uniquely
human. However, that does not imply that other animal species lack knowledge about the limits
of perception. There is now ample evidence that nonhuman animals such as monkeys and rats
exhibit confidence-mediated behavior (reviewed in Smith 2009, Kepecs & Mainen 2012). For-
tunately, this capacity can be studied in binary perceptual decision tasks, a popular vehicle for
probing the mechanisms underlying perception and cognition. The earliest animal experiments
that adopted this approach used experimental paradigms in which the observable behavior im-
plicitly indicated decision confidence (Smith et al. 1997, Hampton 2001, Foote & Crystal 2007,
Kepecs et al. 2008, Kiani & Shadlen 2009). This approach differs from the paradigms that have
long been used in humans and which require explicit confidence reports (Peirce & Jastrow 1884,
Johnson 1939, Festinger 1943). But this gap is shrinking. Recent studies of perceptual deci-
sion confidence in macaques employed behavioral assays that approach something close to an
explicit confidence report (Boundy-Singer et al. 2025, Vivar-Lazo & Fetsch 2025), albeit still mo-
tivated by reward (see the section titled Behavioral Measurements of Decision Confidence). This
methodological evolution enabled direct quantitative comparison of the metacognitive capacities
of humans and macaques (Boundy-Singer et al. 2025). It also provided a new test bed for con-
necting computational models of perceptual decision confidence to the neurobiological substrate
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of confidence-mediated behavior (Boundy-Singer et al. 2025, Vivar-Lazo & Fetsch 2025; see also
Middlebrooks & Sommer 2012). Establishing this connection has additionally been helped by the
development of signal processing techniques capable of uncovering neural signatures of decision-
making and confidence assignment from noninvasive human recordings (Balsdon et al. 2020, 2021;
Geurts et al. 2022; Balsdon & Philiastides 2024). This tapestry of recent developments and the
resulting discoveries are the focus of this review.

We provide a brief overview of popular experimental methods for measuring decision confi-
dence, computational accounts of the mental operations underlying behavioral confidence reports,
and current insights into the neural correlates of confidence computations. We highlight recent
studies whose results suggest that confidence in perceptual decisions arises from a hierarchical
transformation of sensory population activity that aims to estimate decision reliability and unfolds
in parallel with decision formation. We end by speculating on the connections between perceptual
confidence and related capacities that fall under the rubric of performance monitoring.

BEHAVIORAL MEASUREMENTS OF DECISION CONFIDENCE

Confidence measurements have a long history (reviewed in Kepecs & Mainen 2012, Mamassian
2016), show up in distinct parts of the scientific literature (Fleming 2024), and take on various
forms. Here, we focus on confidence in binary perceptual decisions. Our discussion thus pertains
to tasks in which a subject is presented with a sensory stimulus and must judge whether this stim-
ulus belongs to Category A or Category B, for example, whether a patch of colored dots contains
more red or green dots (Figure 14). What is common to all confidence paradigms is that one way
or another the task involves an additional question about the subject’s confidence in their percep-
tual decision. In the most straightforward paradigm, this question is asked directly by presenting
the subjects with a response scale that discretizes confidence into two or more levels. In some ex-
periments, subjects simultaneously communicate their perceptual decision and confidence report.

a Are there more b
red or green dots?
£
3
8
B Response meaning K
w
<«—> Choice 2
£
i Confidence 3
Stimulus strength
C A
[ Incentivization mandatory
[ Incentivization optional
Implicit confidence report Explicit confidence report
Opt out task Waiting time task Direct report Comparison report

Partial taxonomy of confidence probes in binary perceptual decision-making tasks

Figure 1

Measuring confidence in perceptual decisions. (#) Example psychophysical task. The observer judges
whether the stimulus contains more red or green dots. They jointly communicate their perceptual decision
and their decision confidence by selecting one of four choice targets. The horizontal dimension indicates the
perceptual judgment, and the vertical dimension indicates the confidence report. (b) Task difficulty can be
manipulated by changing either the stimulus strength (the red—green ratio) or the stimulus reliability
(variability in dot size). () A partial taxonomy of experimental paradigms suitable to probe confidence in
binary perceptual decisions.
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When this is the case, there are at least four response options to choose from: Category A—
confident, Category A—not confident, Category B—not confident, and Category B—confident
(Figure 1a). Across studies, there is considerable variation in the number of available confidence
levels and in the behavioral procedure used to indicate the selected option. Regardless of the de-
tails of the confidence reporting method, if the available response options are only associated with
a verbal label or numerical score (for example, 3—somewhat confident), their meaning remains
vague.

What exactly does it mean to be confident in a decision? We are not asking this question in a
philosophical sense, but as a practical matter: If a subject wanted to perform the task illustrated
in Figure 1a perfectly, on which trials should they claim to be confident? Only when they feel
100% convinced that the perceptual judgment is correct? Or would 75% be sufficient? What if
they feel certain of their perceptual experience but are not convinced that the associated choice is
correct? Without further specification, these questions cannot be answered objectively. An ideal
strategy can be identified only when there is an explicit goal to strive for (Tanner et al. 1960). In
the absence of such a goal, the confidence reporting scale could mean different things to differ-
ent subjects. For a confidence task to be well defined, the behavioral options need to be coupled
to consequences in the domain of reward. Confidence incentivization typically takes the form of
a variable reward scheme whereby confident responses are high risk and high reward, while not
confident responses are low risk and low reward (Persaud et al. 2007). The reward-maximizing
strategy requires estimating the likelihood of the primary decision being correct and applying a
criterion to this estimate, for example, select the confident option when you believe that the like-
lihood of a correct decision exceeds 80%. Such incentivization is always present in animal studies
but rarely in human experiments. We speculate that this is one reason why human confidence
assignment strategies sometimes appear idiosyncratic (Navajas et al. 2017) and irrational (Peters
etal. 2017, Bertana et al. 2021).

The sense of confidence helps us distinguish easy from difficult decisions. To illuminate the
neural and computational processes underlying this ability, confidence experiments often involve
manipulations of task difficulty, although some studies instead seek to maintain a constant level
of difficulty (Fleming et al. 2010). In the former case, the stimulus will typically be varied along
the task-relevant perceptual dimension. For our example task, this entails creating stimulus condi-
tions that vary in the ratio of red and green dots (Figure 15). We refer to this as a manipulation of
stimulus strength with respect to a task-imposed categorization boundary, whereby strong stimuli
are easier to judge than weak stimuli. Task difficulty is determined not only by stimulus strength
but also by orthogonal factors, such as stimulus eccentricity, size, duration, and contrast. Manip-
ulating the stimulus along these various dimensions can impact task difficulty without changing
the stimulus strength (Figure 15). Such effects are well understood as arising from a change in
the reliability of the stimulus or at least in the associated perceptual estimate. We refer to this as
manipulations of stimulus reliability, whereby reliable stimuli yield more precise perceptual esti-
mates than unreliable stimuli. In the natural environment, multidimensional stimulus variability
is omnipresent (Webb et al. 2023). While the sense of confidence is adapted to this complexity,
it is rarely reflected in laboratory experiments. In summary, the difficulty of a perceptual decision
is jointly determined by the perceptual dimension of interest and the orthogonal dimensions that
govern the reliability of perceptual estimates. It follows that the sense of confidence must take
both factors into account.

Decision confidence can be probed in various ways. One key distinction is whether the task
invites explicit or implicit confidence reports (Figure 1¢). Explicit tasks require subjects to either
directly rate their confidence in a single decision (Peirce & Jastrow 1884) or compare confidence in
a pair of decisions (Barthelmé & Mamassian 2009, de Gardelle & Mamassian 2014). Implicit tasks
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instead measure indirect behavioral indicators of perceptual decision confidence. For example, in
waiting time tasks, the key behavioral measure is how long the subject is willing to wait for an
uncertain reward (Kepecs et al. 2008). In opt out tasks, the key measure is the fraction of trials for
which the subject prefers the safe small bet over the uncertain big reward (Persaud et al. 2007).
Early animal studies of decision confidence used implicit tasks (Smith et al. 1997, Hampton 2001,
Foote & Crystal 2007, Kepecs et al. 2008, Kiani & Shadlen 2009). Two recent studies went a step
further and designed an incentivization scheme that invited monkeys to jointly report a perceptual
choice and their confidence in this decision (Boundy-Singer etal. 2025, Vivar-Lazo & Fetsch 2025;
see also Middlebrooks & Sommer 2012). Both studies found that, once fully trained, monkeys’
behavioral responses closely resemble human direct confidence reports.

While these task paradigms differ substantally, they all seem to work. Subjects typically
exhibit more confidence in correct than incorrect decisions under each of these paradigms
(Peirce & Jastrow 1884, Kepecs et al. 2008, Barthelmé & Mamassian 2009, Kiani & Shadlen
2009). This is true both across and within experimental conditions. These observations have long
intrigued psychologists. What are the mental processes and neural operations that endow us with
this self-knowledge? How can the brain possibly know which perceptual interpretations of the
environment are at risk of being flawed? And what distinguishes good from bad self-knowledge?
Answers to these questions are provided by idealized mathematical descriptions of the confidence
assignment processes at work.

PROCESS MODELS FOR DECISION CONFIDENCE

The search for the neuronal basis of visual confidence is greatly helped by quantifiable hypotheses
that specify how a cascade of sensory transformations leads to observable behavior. Though the
definition is debated, we can think of a process model as a theoretical framework that describes
the causal chain of events comprising a single instance of a decision or other cognitive process.
The focus is on the mechanistic or algorithmic level rather than specifying a normative ideal
or statistical description of aggregate behavior. Two such frameworks have shaped much of the
research in this domain: static signal detection theory (SDT) and the dynamic framework of
sequential sampling (SS). Both frameworks have roots that go back almost a century (Tanner &
Swets 1954, Stone 1960). We do not attempt to document this history but limit our discussion
to recently proposed models that have emerged from these research traditions. Our goal is not
to provide a complete overview of the model variants that populate the literature. We simply
seek to illustrate how process models offer an essential bridge between observable behavior
and its neurobiological basis. Note that the models we discuss are related to but distinct from
the Bayesian confidence hypothesis, which proposes that the sense of confidence equates to a
Bayesian decision-maker’s belief in the posterior probability of a choice being correct (Meyniel
etal. 2015, Sanders et al. 2016, Li & Ma 2020, Xue et al. 2024).

Signal Detection Theory Models

The stimuli used in perceptual confidence tasks (sinusoidal gratings, random dot motion, human
faces, etc.) excite millions of sensory neurons with complex response properties. The neural pro-
cesses underlying decision-making and confidence assignment might therefore be expected to
be similarly high-dimensional and complex. Fortunately, this intuition is wrong. Although both
processes involve large populations of neurons, the task-relevant component of this population
activity typically resides in low-dimensional subspaces (Mante et al. 2013, Peixoto et al. 2021,
Latimer & Freedman 2023, Charlton & Goris 2024, Boundy-Singer et al. 2025). It follows that
we can develop useful intuitions about this activity by examining low-dimensional mathematical
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Figure 2

Process models based on the signal detection theory framework offer explicit, falsifiable hypotheses for the computations that underlie
and constrain confidence in perceptual decisions. (#) Schematic of the hierarchical decision-making process underlying choice
confidence data in one such model (CASANDRE). (4) Choice confidence data of a monkey performing an orientation discrimination
task with direct binary confidence reports. Confident choices are shown in green, and not confident choices are shown in red. The lines
show the fit of the CASANDRE model. (¢) The confidence-consistency relationship of a human subject performing an orientation
categorization task with direct confidence reports (four levels). Symbol color indicates stimulus contrast. The line shows the fit

of the CASANDRE model. (d) Choice confidence data of a human subject performing an orientation discrimination task with
comparison confidence reports under two different stimulus distributions (left prior versus right prior). (Zop) Perceptual choices.
(Bottom) Confidence reports. The lines show the fit of a decision reliability model. (¢) Median level of meta-uncertainty plotted against
the number of stimulus reliability levels for six confidence experiments. (f) Meta-uncertainty for a group of human subjects and two
monkeys performing the same perceptual confidence task. For the humans, each symbol represents the metacognitive performance of
one subject in one block of trials (block 1 is shown in black, and block 3 is shown in white). For the monkeys, each symbol represents
metacognitive performance in one behavioral session. Abbreviations: ¢, confidence; CASANDRE, confidence as a noisy decision
reliability estimate; d, decision; m, meta; Obs, observer. Data in panel ¢ were originally reported in Adler & Ma (2018) and reanalyzed in
Boundy-Singer et al. (2023). Panels , ¢, and ¢ adapted from Boundy-Singer et al. (2023); copyright 2022 The Author(s). Panels 4 and f
adapted from Boundy-Singer et al. (2025) (CC BY-NC-ND 4.0). Panel 4 adapted from Caziot & Mamassian (2021) (CC BY 4.0).

models that offer idealized descriptions of these processes. As an extreme example, assume that a
perceptual decision is based on a single neurally encoded number. We can think of this number
as representing an observer’s perceptual estimate of a task-relevant stimulus feature (for exam-
ple, the ratio of red to green dots) and refer to it as the decision variable (DV). Further, assume
that perception is subject to noise such that repeated presentations of the same stimulus give rise
to variable perceptual estimates. In this scenario, a goal-oriented decision-making strategy con-
sists of comparing the DV with a decision criterion (Tanner et al. 1960, Green & Swets 1966)
(Figure 2a, top). The simplicity of this extreme abstraction, formalized in SDT, elegantly reveals
that choices always reflect a combination of a subject’s sensitivity (i.e., the fidelity of their percep-
tual representations) and their response bias (i.e., the tendency to prefer one response over the
other).

How can introspection reveal which decisions are likely to be correct and should be accom-
panied by a high degree of confidence, and which are not? Under the SDT framework, more
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extreme DV values will occur more frequently for correct than incorrect decisions. It follows
that a decision-maker can exploit this association to assign confidence to decisions. Specifically,
the distance to the criterion offers a principled confidence variable (Treisman & Faulkner 1984,
Kepecs et al. 2008, Komura et al. 2013), at least for tasks in which all conditions are subject to
the same level of perceptual variability. However, in many experimental tasks and real-world
situations, the dispersion of the DV will differ across conditions. To obtain a principled confidence
variable in such settings, the distance to the criterion needs to be normalized by the DV’ un-
certainty (Figure 24, middle). This operation yields an estimate of the reliability of the decision.
Several recently developed SDT-based models propose that an estimate of decision reliability
guides confidence-mediated behavior (Caziot & Mamassian 2021, Shekhar & Rahnev 2021,
Mamassian & de Gardelle 2022, Boundy-Singer et al. 2023) (Figure 24, bottom). As we discuss
next, this hypothesis explains some intriguing aspects of perceptual confidence data (Koriat 2012,
Caziot & Mamassian 2021, Mamassian & de Gardelle 2022, Boundy-Singer et al. 2023).

Decision reliability models of confidence capture the observation that subjects typically report
more confidence in correct than incorrect decisions. As a case in point, consider the behavior of
a monkey performing an orientation discrimination task with direct binary confidence reports
(Figure 2b). The subject’s confident and not confident perceptual choices are shown in green
and red, respectively (Figure 25b). Clearly, confident choices tend to be more accurate than not
confident choices, resulting in a steeper relationship between stimulus orientation and perceptual
choice (Figure 25, red versus green symbols). A decision reliability model describes these effects
well (Figure 2b, red versus green lines). These models also capture another prominent feature
of choice confidence data. Across many repeated trials, the average level of reported confidence
is often lawfully related to the consistency of the primary choice. This is evident in the data of a
human subject who performed a stimulus categorization task with direct confidence reports (four
levels). Both stimulus strength and stimulus reliability varied considerably across trials (Adler
& Ma 2018). A single confidence-consistency relationship neatly summarizes the data across all
conditions (Figure 2c¢). Key to the decision reliability hypothesis is that confidence arises from
an evaluation of the quality of the primary decision, not from a direct evaluation of the sensory
input as such. Perceptual interpretations of the environment typically reflect an interaction
between previous experience and current sensory input. Contextual manipulations that alter the
distribution of experiences can therefore impact perceptual decisions. If perceptual confidence
truly reflects an estimate of decision reliability, these manipulations ought to impact confidence
reports in a similar fashion. This prediction is correct (Locke et al. 2020, Caziot & Mamassian
2021, Mihali et al. 2023), as can be seen in the data of a human subject who performed an
orientation discrimination task with confidence comparison reports under two different stimulus
distributions (Figure 24, left prior versus right prior).

Decision reliability models illuminate not only the computations that underlie decision confi-
dence butalso the factors that constrain its quality. Recall that the confidence computation in these
models involves the uncertainty of the DV that informed the primary choice (Figure 24, middle).
"To accurately estimate the reliability of a choice, a subject thus needs to know this uncertainty.
If there is uncertainty about this uncertainty (meta-uncertainty), the decision reliability estimate
will be noisy. This idea is formalized in the confidence as a noisy decision reliability estimate
(CASANDRE) model (Boundy-Singer et al. 2023). In the CASANDRE framework, meta-
uncertainty is the sole factor that determines the quality of metacognition. The higher the level
of meta-uncertainty, the weaker the association between confidence and decision reliability. This
framework makes the unique prediction that meta-uncertainty will be higher in experiments that
involve more levels of stimulus reliability. In other words, metacognitive abilities may depend on
the specifics of the task, just like perceptual abilities do. Boundy-Singer et al. (2023) compared
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results from six confidence studies and found that meta-uncertainty tends to grow with the num-
ber of reliability levels (Figure 2e). Other decision reliability models have proposed alternative
sources of confidence noise, such as instability of the confidence criteria across trials (Shekhar &
Rahnev 2021). Some model variants additionally include a confidence boost component, which
has the opposite effect of noise and captures information about decision reliability acquired after
the decision has been committed to (Mamassian & de Gardelle 2022).

Meta-uncertainty provides a theoretically pure measure of metacognitive ability that expresses
how well a decision-maker can discriminate reliable from unreliable choices, regardless of their
level of perceptual sensitivity or response biases. Importantly, it is anchored in a process model
of the decision that underlies behavioral confidence measurements. Psychologists have long
sought to measure the quality of the sense of confidence (Nelson 1984). This is typically done
by using metrics that are agnostic about the generative process that underlies confidence reports.
For example, one popular statistic (meta-d’) seeks to measure how well confidence judgments
distinguish correct from incorrect decisions using a sensitivity metric that resembles conventional
d’ (Maniscalco & Lau 2012). Another recently introduced statistic (meta-I) is instead based on
information theory (Dayan 2023). While these metrics are convenient, they not only reflect
metacognitive ability but also depend on perceptual sensitivity and response biases (Guggenmos
2021, Xue et al. 2021, Vuorre & Metcalfe 2022, Arnold et al. 2023, Boundy-Singer et al. 2023,
Dayan 2023, Rahnev 2025). We think that process models of confidence have matured enough for
principled metrics of metacognitive ability to become the norm in the near future. Boundy-Singer
et al. (2025) recently used such a model-based approach to compare the quality of confidence
reports in humans and monkeys who performed the same perceptual confidence task under
analogous incentives. The monkeys were well-trained specialists, while the humans were novices.
Still, it is surprising that the monkeys initially outperformed the humans in their ability to judge
the quality of perceptual orientation judgments (Figure 2f, humans 1 versus monkeys Z and
F). It took the humans two more 1,100-trial sessions to catch up with the monkeys (Figure 2f,
humans 3 versus monkeys Z and F). Note that these human data constitute a rare empirical
indication of metacognitive learning; this topic seems ripe for experimental investigation but will
likely require the use of principled metrics (Carpenter et al. 2019, Rouy et al. 2022).

Sequential Sampling Models

While static SDT provides an elegant and tractable framework for building confidence models,
the theory lacks an explicit representation of time. As a consequence, SDT-based models make no
direct prediction about the relation between decision confidence and the time it takes to report
a decision. Yet, in many perceptual tasks, a prominent relation is obvious: Confident decisions
are reported faster. This suggests that decision confidence is deeply connected to decision time
(Henmon 1911, Audley 1960, Vickers 1979). Dynamic models seek to explain this relationship, as
well as the aforementioned confidence-choice relationships that can be captured by static models
(Figure 2b-d).

Most dynamic confidence models are derived from the broader framework of bounded SS,
commonly referred to as evidence accumulation, and inclusive of drift-diffusion and race models
(Ratcliff & Rouder 1998, Gold & Shadlen 2007). These models can be considered an extension of
SDT in time, motivated by tasks in which evidence bearing on the decision is available in the form
of a continuous stream or a discrete sequence. This temporal structure can be an explicit property
of the external stimulus to be judged, as is the case for random dot motion and event-rate or count-
ing tasks (Shadlen et al. 1996, Raposo et al. 2012, Brunton et al. 2013). These tasks simply cannot
be solved based on a single click or video frame; integration across time is required. But even when
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not explicit, temporal integration is almost always an implicit property of sensory processing. Of
course, peripheral receptors and central neurons have their own intrinsic time constants, but sen-
sory responses are also corrupted by momentary noise (Schiller et al. 1976, Shadlen & Newsome
1998, Faisal et al. 2008, Goris et al. 2024). It follows that even for static stimuli, integration of
evidence for periods longer than the biophysical time constant may improve the signal-to-noise
ratio of the DV (Bloch 1885, Watson 1979, Osborne et al. 2004, Goris et al. 2018, Langlois et al.
2025).

The classic normative rule for confidence judgments in a dynamic framework is attributed
to Vickers, who observed that confidence should depend on the balance of evidence supporting
each of the two options (Vickers et al. 1972, Vickers 1979). Intuitively, if the collected evidence
favors a Category A decision, confidence in this decision should also take into account how well
a Category B choice is supported by this evidence. The larger the difference in support for the
two options, the more likely the choice is correct, and the higher the confidence in the decision
should be. An elegant implementation of this notion is offered by race models (Vickers 1979,
Kiani et al. 2014) (Figure 34). In these models, decision-making is portrayed as a race between
two accumulators, each favoring one of the categorical options. The race ends when the first
accumulator reaches a terminating bound, and confidence is inversely related to the amount
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Partial taxonomy of evidence accumulation models of perceptual decision confidence

Dynamic models link decision accuracy, speed, and confidence under an evidence accumulation framework. (#) A leading model posits a
race between two partially anticorrelated accumulators, each representing one categorical choice option. The winning accumulator
determines the choice and RT, while confidence can be read out from the losing accumulator, which reflects the BoE at decision time.
() The BoE rule can be formalized by calculating the log posterior odds of being correct as a function of the state of the losing race.
When stimulus difficulty is unpredictable, this relationship is time dependent. (c) Monkeys were trained to report the direction of
motion in a random dot display and to report their choice and confidence simultaneously in an RT paradigm using a target
configuration similar to Figure 1a. Panels show choice, RT, and confidence (proportion high bet) as functions of motion strength

(% coherence), where positive values indicate rightward motion and negative leftward. Smooth curves are fits to the race model.

(d) Partial taxonomy of dynamic models defined by whether choice and confidence make use of the same or distinct accumulation
process and/or time epoch. From left to right starting in the top row, examples of each model class can be found in the following
references: Kiani et al. 2014, Desender et al. 2021a, Pleskac & Busemeyer 2010, Balsdon et al. 2021, Maniscalco et al. 2021, Navajas
et al. 2016. Abbreviations: BoE, balance of evidence; DV, decision variable; RT, reaction time; RW, rightward. Panel # adapted from
Kiani et al. (2014); copyright 2014 Elsevier. Panel ¢ adapted from Vivar-Lazo & Fetsch (2025) (CC BY-NC-ND 4.0).
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of evidence favoring the losing accumulator. Although it is difficult to precisely define Bayes
optimality in a dynamic model, the balance of evidence rule can be linked to Bayesian confidence
by positing a mapping between the state of the losing race and the log posterior odds that the
decision is correct (Kiani et al. 2014) (Figure 35). How such a mapping could be acquired and
represented in the brain is an open question (Le Denmat et al. 2024). Regardless, the framework
makes explicit predictions for the relationships between choice accuracy, reaction time, and
decision confidence. In many tasks, these predictions have been found to capture behavioral data
well (Kiani et al. 2014, van Den Berg et al. 2016, Vivar-Lazo & Fetsch 2025).

In a recent study, Vivar-Lazo & Fetsch (2025) trained macaques in a binary motion discrimi-
nation task with explicit confidence reports. The monkeys were tasked with judging whether the
global stimulus was dominated by leftward or rightward motion and simultaneously reported their
confidence in each decision (i.e., high versus low). Importantly, the subjects were free to report
their decision (and confidence) when ready, resulting in fast and slow trials. The animals’ choice
confidence reports resemble those of the previous example (Figure 2b)—easier task conditions
were associated with better performance, as were high confidence reports (Figure 3¢, left and
right). Additionally, the animals’ average reaction time lawfully depended on task difficulty and
was therefore inversely related to decision confidence (Figure 3¢, middle). These data are repre-
sentative of observations made in human subjects (Kiani et al. 2014) and are well captured by a
race model (Figure 34,b). Note that an inverse relationship between response time and confidence
does not entail that confidence computations incorporate the passage of time per se. This was the
case in the model and data of Kiani et al. (2014), but in general, decision speed may correlate
with confidence simply because both are correlated with accuracy. Whether elapsed time plays a
causal role likely depends on details of the task and was not directly tested in the monkey study
of Vivar-Lazo & Fetsch (2025). This question may seem esoteric but it bears on deeper questions
about how the brain performs inference under uncertainty (Hanks et al. 2011, Shadlen & Kiani
2013, Khalvati et al. 2021, Langlois et al. 2025), the intriguing possibility being that time itself
is used by the brain as a proxy for evidence reliability (Shadlen & Kiani 2013). We might go a
step further and say that time informs an estimate of decision reliability; after all, the distribu-
tion of the DV is affected not only by the strength of sensory evidence but by nonsensory factors
(attention, biases, etc.) that limit the quality of the decision. An interesting hypothesis that fol-
lows is that imprecision in the estimate of accumulated evidence and/or elapsed time in a dynamic
model may be the conceptual analog of the meta-uncertainty component in static models like
CASANDRE.

Taking a step back, dynamic models allow us to ask more fundamental questions about the
relative timing of decision and confidence computations (Baranski & Petrusic 1998, Xue et al.
2023). Is confidence determined only after choice commitment, or might it be available during
decision formation? Under a race model, the balance of evidence could in principle be read out
continuously and would furnish a provisional choice confidence report: If forced to choose right
now, I would choose this option and my confidence would be this high. Under some alternative
models, confidence can only be determined following an epoch of additional accumulation after
choice commitment (Pleskac & Busemeyer 2010, Moran et al. 2015, Navajas et al. 2016). Indeed,
there is compelling evidence for postdecisional processing in confidence judgments (Murphy et al.
2015, Desender et al. 2021b), but there is no reason to see this as mutually exclusive with a provi-
sional confidence estimate emerging during the decision process (Gherman & Philiastides 2015,
Balsdon et al. 2021, Vivar-Lazo & Fetsch 2025).

A partial taxonomy of dynamic models (Figure 3d) can be defined by whether choice and con-
fidence make use of the same or different information, both in terms of when the information is
used and also what information is used. For example, choice and confidence could be computed in
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parallel but with the latter governed by a distinct process that accumulates independent evidence
for each choice rather than a comparison signal or relative evidence (Maniscalco etal. 2021). Alter-
natively, Balsdon & Philiastides (2024) propose an unbounded relative evidence accumulator for
confidence and a separate motor accumulator dictating the choice, where the former controls the
leakiness of the latter to adapt to dynamic changes in evidence strength or reliability. We return to
this issue below in the discussion of human electroencephalography (EEG) studies and macaque
neurophysiology. What we can say from behavioral work in humans (Kiani et al. 2014) and mon-
keys (Vivar-Lazo & Fetsch 2025) is that postdecision accumulation is not necessary for rational
confidence-mediated behavior. Whether and when an online confidence estimate is accessible has
further implications for sequential or hierarchical tasks (Sarafyazd & Jazayeri 2019, Zylberberg
2021), where a prediction of accuracy for a given decision or action informs the selection and ex-
ecution of the next one. More broadly, models and experiments that jointly resolve the what and
when of confidence formation are essential if we want to understand the neural operations and
information flow underlying metacognition (Fleming 2024).

In summary, process models of visual confidence offer three key insights. First, the brain’s con-
fidence computation acts on the same sensory inputs that inform perceptual decisions. Second,
the brain’s confidence computation extracts an estimate of both stimulus strength and stimulus
reliability to estimate something akin to decision reliability. And third, choice confidence compu-
tations unfold over time rather than being implemented as a snapshot process, and they appear to
do so in parallel, facilitating a role for confidence in modulating current or subsequent decision
processes. Armed with these insights, we now turn to the question of how neural circuits actually
implement these computations.

NEURAL CORRELATES OF CONFIDENCE COMPUTATIONS
IN NONHUMAN ANIMALS

Anatomically, the primate visual system is organized as a hierarchical network composed of par-
allel processing streams (Felleman & Van Essen 1991). Computationally, visual processing can
therefore be understood as a series of transformations that extract behaviorally useful information
from raw visual input. This perspective on neural computation readily explains how the same pho-
toreceptor responses inform our ability not only to recognize objects (DiCarlo et al. 2012, Yamins
et al. 2014) but also to perceive form (Van Essen & Gallant 1994), color (Gegenfurtner & Kiper
2003), motion (Simoncelli & Heeger 1998, Mineault et al. 2012), and depth (DeAngelis 2000). It
even explains how these responses enable us to predict the future state of the visual environment
(Hénaff et al. 2019, 2021). Might visual confidence also belong in this list? In other words, is it
possible to specify a cascade of neural operations that converts low-level sensory responses into a
perceptual decision confidence variable? If so, could we recognize signatures of these downstream
operations in neural activity in the sensory cortex? This is the question that Boundy-Singer et al.
(2025) sought to address for a fine orientation discrimination task with direct confidence reports
(Figure 4a).

In the primary visual cortex (V1), neurons are tuned for local image orientation (Hubel &
Wiesel 1962), making this area well suited to inform perceptual orientation judgments. Does
V1 activity also inform confidence in these decisions? To gain an intuition for downstream trans-
formations that could accomplish this, consider a pair of hypothetical V1 neurons (Figure 45).
One of these neurons prefers clockwise-oriented stimuli; the other prefers counterclockwise ori-
entations. Their joint activity pattern therefore contains information about whether a stimulus
is more or less likely to have a clockwise orientation (Figure 4, left). To convert this popula-
tion response into a perceptual decision, a downstream decision-making circuit could in principle
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Figure 4

Neuronal operations that convert low-level sensory responses into a high-level confidence representation. (#) Sequence of events in the
orientation discrimination task studied by Boundy-Singer et al. (2025). After the observer acquires fixation, four choice targets appear,
followed by the stimulus. The stimulus is placed in the recorded neurons’ visual receptive field (RF). The observer judges whether the
stimulus is rotated CW or CCW relative to vertical. They jointly communicate this orientation judgment and their decision confidence
with a saccade toward one of the four choice targets (as in Figure 14). (b)) Orientation tuning functions for two model neurons (black
versus gray) at high and low stimulus contrast (open versus closed symbols). (c, left) Joint responses of the pair of model neurons to repeated
presentations of four stimuli that differ in orientation and contrast. (Middle) Illustration of a mapping rule that converts the pairwise
activity into a perceptual decision. (Right) Illustration of a mapping rule that converts the same responses into a confidence report.

(d) Spike rasters (dots) and peristimulus time histogram (/ines) of three example units during presentation of a CW (gray) and CCW
(black) stimulus. (¢) Direct comparison of linear and nonlinear decoders. (Left) Comparison of the proportions of correctly predicted
perceptual choices by linear (abscissa) and nonlinear (ordinate) choice decoders. (Right) Comparison of the proportions of correctly
predicted confidence reports by linear (abscissa) and nonlinear (ordinate) confidence decoders. The asterisks indicate P < 0.001.

(f) Relationship between the decoded confidence and decision variables. (Left) Each point represents a single trial in an example
recording session. (Right) The mean confidence level plotted against stimulus orientation for trials with a DV value that is more (black)
or less (gray) extreme than the stimulus-specific median. Abbreviations: a.u., arbitrary units; CCW, counterclockwise; CW, clockwise;
DV, decision variable; ips, inches per second; n.s., not significant; RE, receptive field. Figure adapted from Boundy-Singer et al. (2025)
(CC BY-NC-ND 4.0).

use a linear hyperplane to separate the response patterns associated with both stimulus categories
(Figure 4c, middle). The resulting decisions will not be flawless. There is overlap between both
response distributions, making errors inevitable. The critical insight is that the structure of the
population activity also contains information about the likelihood of such an error. First, responses
that are close to the hyperplane are more likely to be caused by weak stimuli and thus more likely
to yield flawed perceptual decisions (Figure 4c, middle). Second, response patterns that reside
near the bottom left corner of this space are more likely to be caused by less reliable low-contrast
stimuli and thus more likely to yield perceptual errors (Mareschal & Shapley 2004, Hénaff et al.
2020, Boundy-Singer et al. 2024). It follows that a downstream confidence assignment circuit in
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principle can use a nonlinear hyperplane to convert this sensory population activity into a
confidence assessment.

To examine the relationship between sensory population activity and decision confidence,
Boundy-Singer etal. (2025) recorded from diversely tuned V1 populations (Figure 4d). They then
trained linear and nonlinear decoders to predict the monkeys’ perceptual choices and confidence
reports from this activity. In both cases, the decoders performed above chance, demonstrating
that the same sensory activity might inform perceptual and metacognitive judgments. However,
there was an interesting distinction. The nonlinear decoders consistently outperformed their lin-
ear counterparts in predicting confidence reports but not perceptual decisions (Figure 4e). This
pattern is consistent with the hypothesis that the confidence assignment process involves a non-
linear transformation of sensory activity that is distinct from the linear transformation that gives
rise to perceptual decisions. This does not mean that V1 contains a representation of confidence,
nor that confidence can be trivially decoded from any site in the visual pathway, including the
retina, if nonlinear operations are permitted (Pouget et al. 2016). Confidence is a latent cognitive
variable used to guide behavior, not an abstract mathematical quantity. Boundy-Singer and col-
leagues’ key advancement was linking V1 activity to a direct behavioral readout of confidence on
a trial-by-trial basis (see also Geurts et al. 2022).

To further elucidate the transformations of V1 activity into a behavioral confidence report,
Boundy-Singer et al. (2025) investigated the relationship between the latent variables used by the
choice and confidence decoders. As expected from decision reliability models of confidence, the
neurally decoded confidence variable and DV exhibited a U-shaped relationship (Figure 4f, left).
"This means that trials that elicited a stronger DV value also tended to elicit a higher level of con-
fidence. Crucially, this effect was also evident within fixed stimulus conditions (Figure 4f, right,
black versus gray line). Together, these results provide the first empirical evidence that for simple
perceptual decisions, a set of specialized nonlinear transformations converts sensory population
activity into a decision reliability estimate, which in turn informs confidence-mediated behavior.
Stepping back, these findings highlight how sophisticated behavior can arise from a cascade of
simple operations. This notion underlies much of the success of modern artificial intelligence
(LeCun et al. 2015, Tuckute et al. 2024). We think it also applies to certain components of
biological intelligence.

If perceptual decisions and decision confidence arise from distinct transformations, it is natural
to ask whether both computations unfold simultaneously, as suggested by the behavioral studies
described above. The capacity to compute multiple things at once is a key feature of parallel hierar-
chies and is evident across visual modalities: We simultaneously perceive form, motion, and depth.
Is this also true for visual confidence? More specifically, does the brain’s confidence computation
unfold in parallel with the decision-making process itself? To address this question, Vivar-Lazo
& Fetsch (2025) investigated neural activity in a decision-making circuit downstream of the vi-
sual cortex during a motion discrimination task with direct confidence reports. They focused on
the lateral intraparietal area (LIP), a region involved in visuospatial attention and the planning
of saccadic eye movements (Bisley & Goldberg 2010, Snyder et al. 2000), as well as other aspects
of visual cognition, such as category judgments (Freedman & Assad 2006). LIP has been shown
to represent an evolving DV that explains choice and response time (Roitman & Shadlen 2002,
Kira et al. 2015, Steinemann et al. 2024) and predicts implicit confidence reports in an opt out
task (Kiani & Shadlen 2009). The strategy is to exploit the spatial and oculomotor properties of
LIP to expose the computations underlying the decision of where to move the eyes; thus, Vivar-
Lazo & Fetsch (2025) used a task configuration very similar to Boundy-Singer et al. (2025) and
recorded from LIP neurons whose response fields (RFs) overlapped with one of the four choice
targets (Figure 54).
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Neural dynamics in LIP support concurrent evolution of choice and confidence signals within a common population. (#) Sequence of
events in the motion discrimination task studied by Vivar-Lazo & Fetsch (2025). After the observer acquires fixation, four choice targets
appear, followed by the stimulus. One of the choice targets is placed in the recorded neurons’ response field (RF). The observer judges
whether dot motion is predominantly in the left or right direction. They jointly communicate this motion judgment and their decision
confidence with a saccade toward one of the four choice targets (as in Figure 14). () Average firing rate (normalized and baseline
subtracted) of neurons with a spatial RF overlapping the contralateral (/eft) high-confidence target, aligned to stimulus onset and
saccade onset. Colored traces indicate the eventual choice of the monkey. Activity traces for high versus low choices separate at the
same time as those for left versus right, consistent with parallel deliberation for choice and confidence. () Theoretical autocorrelation
matrix of an ideal noisy accumulation process [Churchland et al. (2011) were the first to derive the expected autocorrelation matrix;
their prediction applies to Vivar-Lazo & Fetsch’s (2025) experiment]. Correlation relative to the initial time bin drops as a function of
time (bottom row), whereas neighboring time bins show greater correlation over time as the accumulation continues ( first juxtadiagonal).
(d) Comparison of theoretical predictions with the corresponding time bins in the LIP spike count data. (¢) Classification performance
of logistic decoders trained to predict the perceptual choice (blue) and confidence report (black) as a function of time. Both decoders
begin to ramp up simultaneously, although the choice decoder peaks slightly earlier (peri-saccade) than the confidence decoder
(post-saccade). (f) Trial-by-trial decoding strength (model decision variable in units of log odds) for the choice decoder as a function of
the strength of the confidence decoder prediction (probability of high confidence). Data are shown for only in-RF (contralateral)
choices and color-coded by the monkey’s behavioral confidence report. Abbreviations: LIP, lateral intraparietal area; RF, response field;
RT, reaction time. Figure adapted from Vivar-Lazo & Fetsch (2025) (CC BY-NC-ND 4.0).

The use of a reaction time paradigm conferred several advantages. It allowed for trial-by-trial
comparison of three key behavioral measures (choice, reaction time, and confidence; Figure 3c)
and served to isolate the temporal window over which neural activity could support the choice
and confidence report. It also encouraged the monkeys to adopt a parallel strategy (i.e., to resolve
the perceptual choice and confidence judgment concurrently), which was borne out by the behav-
ioral results. What about the neurons? Many cells in LIP show ramping activity prior to a saccade
made into their RF, with dynamics and statistical properties consistent with an evidence accu-
mulation process (Churchland et al. 2011, Steinemann et al. 2024). Vivar-Lazo & Fetsch (2025)
found that these accumulator-like neural signatures were present simultaneously for both the left
versus right choice and the high versus low wager (Figure 5b-d). Population decoding supported
this conclusion (Figure 5e). As with the V1 results from Boundy-Singer et al. (2025), there was
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a trial-by-trial relationship between the strength of the decoded choice variable and the decoded
degree of confidence, even within trials of fixed stimulus strength (Figure 5f). Interestingly, this
correlation held only for contralateral (in-RF) choices, which would correspond to the winning
accumulator under the idea that LIP populations represent accumulated evidence favoring in-RF
choices. This result [and a related finding from Zylberberg & Shadlen (2025)] appears to con-
tradict the theoretical expectation that the losing accumulator contributes to confidence (Kiani
et al. 2014), although caution is warranted: The correspondence between neural populations and
modeled accumulators may not be as direct as is commonly assumed (Mante et al. 2013, Meister
et al. 2013). Exactly how neural circuits map decision and confidence computations onto specific
motor behaviors remains a topic of ongoing research.

Together, both recent studies in macaques that used direct confidence reports provide support
for the hypothesis that visual confidence arises from a hierarchical transformation of sensory ac-
tivity that unfolds in parallel with decision formation. Earlier findings obtained in different task
paradigms offer indirect support for this hypothesis. Specifically, Fetsch et al. (2014) found that
microstimulating sensory neurons in the middle temporal area during a motion discrimination
opt out task simultaneously biased the monkeys’ perceptual choices and opt out behavior as if
the animals experienced a change in the sensory signal. These results suggest that the same sen-
sory signals inform perceptual decisions and confidence in these decisions, as do similar results
obtained with optogenetic inactivation by Fetsch et al. (2018). A different study employing the
opt out paradigm found that pulvinar neurons represent decision confidence but not perceptual
choice (Komura et al. 2013). Inactivating the pulvinar affected the confidence-mediated behav-
ior but not perceptual sensitivity (Komura et al. 2013). These results suggest that in some tasks,
different brain circuits implement the decision formation and confidence assignment computa-
tions, as is clearly possible (though not necessary) under the parallel hierarchical transformations
hypothesis.

NEURAL CORRELATES OF CONFIDENCE COMPUTATIONS
IN NONINVASIVE HUMAN EXPERIMENTS

Naturally, if we are interested in higher functions like metacognition, an essential animal model
is the one reading this paragraph. The toolkit for exploring the neural basis of perceptual confi-
dence in humans is limited by the coarse and indirect nature of blood oxygenation level-dependent
(BOLD) and positron emission tomography (PET) imaging and by the scarcity of opportunistic
intracranial recordings in human patients (but see below). Noninvasive electrophysiology, namely
electro- and magnetoencephalography, complements the poor temporal resolution of neuroimag-
ing, but until recently it was unclear how one could extract neural signatures of an evolving
decision and confidence judgment using these methods. After all, EEG measures the aggregate
electrical activity of large volumes of cortical tissue, filtered by the skull, whereas the underlying
neural computations likely take place at a finer spatial scale and are transmitted through trains
of action potentials. Nevertheless, aided by model-based approaches and novel signal processing
techniques, recent noninvasive experiments (reviewed in O’Connell & Kelly 2021) have assem-
bled a surprisingly rich account of perceptual decision processes and associated metacognitive
evaluation in humans.

One approach is to identify an EEG correlate of evidence accumulation (O’Connell & Kelly
2021), then test whether and how the dynamics of that signal predict subjective confidence reports.
This approach was taken by Gherman & Philiastides (2015), who decoded single-trial EEG sig-
nals during a perceptual categorization task with an opt out option. They found that the slope of
the resulting accumulation-like ramping signal was greater for trials in which the participant was
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given the chance to opt out of the decision but waived this option (high-confidence trials) than for
trials in which the opt out choice was unavailable (a mixture of low- and high-confidence trials).
The pattern was strikingly similar to findings in monkeys (Kiani & Shadlen 2009) and is consis-
tent with the proposal that confidence is influenced by the dynamics of an evolving DV that also
underlies the choice. A follow-up study by the same group used functional magnetic resonance
imaging combined with EEG to localize a region of the ventromedial prefrontal cortex that re-
flects an early-arising confidence signal (Gherman & Philiastides 2018). The implication is that
the early EEG correlate is not simply a reflection of post hoc sorting of trials but may actually be
read out to establish a stimulus-independent representation of provisional confidence prior to de-
cision termination. This conclusion was recently reinforced by Dou et al. (2024), who found that
EEG decision signals predict confidence independently of accuracy, reaction time, and evidence
strength.

Other investigators used a similar approach but with a focus on postdecision signals. Murphy
et al. (2015) found that the EEG-derived DV continues to evolve after the initial choice commit-
ment and predicts the timing of self-reported errors. The idea of continued accumulation after
initial bound crossing (van Den Berg et al. 2016) raises the question of how two distinct termina-
tion rules can be applied to the same DV. An alternative is to posit separate accumulators for choice
and confidence (Balsdon et al. 2021, Maniscalco et al. 2021). As alluded to above, this architecture
has the intriguing property of allowing online confidence computations to regulate the decision
process itself (Balsdon et al. 2020, Balsdon & Philiastides 2024). Anatomically, the recent study by
Balsdon & Philiastides (2024) localizes the choice (motor) accumulator to the contralateral motor
cortex, whereas the confidence (primary) accumulator is associated with central parietal positiv-
ity, a prominent signal that is the focus of most EEG studies of evidence accumulation. Inspired
by these findings, future work in invasive preparations (human and animal) could evaluate the
dual-accumulator hypothesis at the circuit and population levels, for instance, by testing for DV
representations simultaneously evolving in orthogonal subspaces (e.g., Charlton & Goris 2024)
and by comparing single-trial dynamics across multiple brain areas (Bondy et al. 2024, Khilkevich
etal. 2024).

CONFIDENCE AND PERFORMANCE MONITORING

At the beginning of this review, we laid out examples of why perceptual confidence is critical for
adaptive behavior in the moment (e.g., cross the street or not?). There is also a large literature on
how the quality of decisions can be monitored (Ullsperger et al. 2014, Fu et al. 2023) to decide
whether to maintain or adjust the current strategy or policy to adapt to changing environments (for
a detailed review, see Egner 2023). Like perceptual confidence, performance monitoring involves
tracking internally generated representations—task sets, goals, motor plans, efference copies—
that are private to the individual brain, so it, too, certainly qualifies as metacognitive. Apart from
both involving metacognitive monitoring of decisions, confidence judgments and performance
monitoring appear to activate overlapping brain regions in humans, particularly the medial frontal
cortex (MFC) (Shenhav et al. 2013, Ullsperger et al. 2014, Morales et al. 2018, Fu et al. 2023),
raising the question: What is the relationship between the two?

A key function of performance monitoring is detecting errors or identifying failures to achieve
internal goals. Errors lead to measurable behavioral adaptations, such as post-error slowing of
reaction times on subsequent trials (Rabbitt 1966, Laming 1968), and evoke a robust signal in
noninvasive EEG recordings, known as error-related negativity (Falkenstein et al. 1991, Gehring
etal. 1993). The amplitude of error-related negativity correlates with neuronal firing in the MFC
in both macaques (Sajad et al. 2019) and humans (Fu et al. 2019). While this error detection
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function at face value might suggest conceptual overlap with confidence, there are fundamental
differences. In error monitoring, the notion of correctness is derived from endogenous task set or
goal representations, which are encoded in the prefrontal cortex and provide strong input to the
MEFC to compute error signals (Miller et al. 2002; Mian et al. 2014; Helfrich & Knight 2016; Sajad
et al. 2019, 2022; Fu et al. 2023). This means that the ground truth against which performance is
judged is internal, whereas perceptual confidence ought to ultimately relate to an external world
state, notwithstanding that it is estimated by internal monitoring of the reliability of a decision
process. However, confidence reports can also be elicited in scenarios where the ground truth is
ambiguous or only partially accessible to decision-making circuits. For instance, people can rate
their confidence in episodic memory retrieval (Rutishauser et al. 2015), value-based choices (De
Martino et al. 2013), and perceptual tasks involving fully ambiguous stimuli, as we have described
above. An intriguing question for future research is whether confidence in the absence of an ex-
ternal ground truth is computed similarly to the detection (or prediction) of errors relative to an
internal goal or standard.

In the cognitive control literature, action selection refers to a process in which goal-directed
and goal-irrelevant actions compete for behavioral output, analogous to the deliberation process
during perceptual decision-making. Conflict monitoring theory (Botvinick et al. 2001, Shenhav
et al. 2013) proposes that conflict between response options in action selection signals the need
for enhanced cognitive control. This conflict, like errors, is explicitly monitored and serves as an
internal feedback signal for cognitive control. Consistent with this theory, human and macaque
single-unit recordings have found such conflict signals during (Sheth et al. 2012) and after (Sajad
etal. 2019, 2022; Fu et al. 2022; Corrigan et al. 2024) action selection in the MFC. Such a moni-
toring process, which generates the error and conflict signals, could then inform domain-general
confidence judgments and simultaneously inform adjustments of behavioral strategy. Supporting
this, humans can rate the confidence of error occurrence in the action just performed, and an er-
ror positivity EEG signal (Van Veen & Carter 2002) is correlated with such confidence reports
(Nieuwenhuis et al. 2001, Boldt & Yeung 2015).

Interestingly, a classical behavioral study provides evidence that performance monitoring
and explicit report are at least partially dissociable (Logan & Crump 2010). Skilled typists per-
formed a typing task with visual feedback and were later asked to decide whether errors had
occurred or not. As they made errors, some errors were displayed as is, some were covertly
corrected, and some fictitious errors on the screen were covertly inserted by the experimenter.
Genuine errors made by the typist led to post-error slowing regardless of what was on the screen,
yet the typist reported only errors that they visually perceived (both real and inserted). This sug-
gests that while performance monitoring provides error signals for explicit report, it is outweighed
by the detection of an error based on visual feedback. Perhaps if the visual feedback was degraded,
the conscious report would rely more on error detection, analogous to how signals are weighted by
reliability in sensory cue combination (Fetsch etal. 2013; Ernst & Banks 2002), but this speculation
remains untested.

A key advantage of human experiments is the ability to perform multiple tasks with minimal
training (Fu et al. 2022). Recording single neurons in humans in epilepsy monitoring settings pro-
vides a powerful way to test the generalizability of hypotheses generated by neuroimaging studies
and nonhuman primate work across several tasks and thus complement such work (Fu et al. 2023).
This platform creates new opportunities to evaluate the domain generality of confidence com-
putations by eliciting judgments from a range of inputs, including both perceptual signals and
performance monitoring. This approach not only complements the detailed mechanistic studies
in macaques, which have traditionally focused on a narrower set of cognitive domains, but it has
also already yielded fresh insights into the general principles of performance monitoring. The
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representational geometry of MFC neurons enables error monitoring to generalize across dif-
ferent cognitive tasks by factorizing into a task dimension and error dimension (Fu et al. 2022).
It remains to be tested whether a similar geometry may also support domain-general confidence
based on performance monitoring and perception.

CONCLUDING REMARKS AND OPEN QUESTIONS

Seeking to understand how the brain evaluates the quality of its own perceptual judgments
and goal-directed action plans is one of systems neuroscience’s more ambitious undertakings.
By combining research traditions from psychology and neuroscience in creative ways, consid-
erable progress has been made in this endeavor (see the section titled Summary Points). Modern
computational models of perceptual decision confidence articulate explicit hypotheses about the
mental processes at work and provide quantitative predictions for confidence in binary percep-
tual decisions. These models capture many intriguing aspects of confidence reports, including the
relationships between decision confidence and choice consistency and between decision confi-
dence and reaction time. In doing so, these models can provide insight into the relative timing
of decision formation and confidence assignment and illuminate the factors that constrain the
quality of the sense of confidence. Importantly, key model components have been either di-
rectly or indirectly recognized in the neural activity of human and nonhuman subjects generating
confidence-mediated behavior. In our view, we have now reached the point where the basic prin-
ciples of the causal chain of neural events that transform photons into visual metacognition are
understood for some simple perceptual tasks. Despite this progress, it is obvious that our current
knowledge is still lacking in depth and breadth. The study of the neurobiological basis of visual
confidence has so far been limited to a small number of perceptual tasks and brain areas. Much
remains to be learned (see the section titled Future Issues). Future work should aim to identify
how the neural mechanisms that compute perceptual decision confidence operate across different
sensory modalities, confidence-mediated behaviors, and task contexts. The behavioral paradigms,
computational models, and physiological discoveries highlighted in this review offer a promising
starting point for this endeavor.

1. Building on a rich history, the modern study of visual confidence primarily focuses on
confidence in perceptual judgments of ambiguous stimuli. Confidence reports can be
direct or indirect and incentivized or unincentivized.

2. Confidence experiments are conducted in humans and nonhuman animals such as mon-
keys and rats. Once fully trained, monkeys’ behavioral responses can closely resemble
human direct confidence reports.

3. Process models of decision confidence specify a causal chain of events that yield quan-
titative predictions for the relation between experimentally controlled variables and
observed confidence reports. The literature is populated by a large variety of such
models.

4. Static models that equate the sense of confidence to subjective decision reliability explain
the relationship between choice consistency and decision confidence. These models also
provide principled metrics for the quality of the sense of confidence (i.e., metacognitive

ability).
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5. Dynamic models that equate the sense of confidence to the balance of evidence across
competing evidence accumulators explain the relationship between the time it takes to
report a choice and decision confidence. These models also provide insight into the
relative timing of decision and confidence computations.

6. A recent study showed that monkeys’ perceptual orientation judgments and their confi-
dence in these decisions can both be predicted from primary visual cortex population
activity. The relationship between sensory responses and decision confidence differs
from the one between sensory responses and decision content.

7. A recent study that employed a reaction time paradigm with simultaneous decision and
confidence reports showed that neural signatures of decision formation and confidence
assignment unfold simultaneously in the lateral intraparietal area of macaques.

8. The capacity to evaluate the quality of one’s own perceptual decisions may be connected
to the capacity to monitor internal action selection conflicts, an important aspect of cog-
nitive control. This monitoring process is reflected in neural activity in the medial frontal
cortex of humans and macaques.

1. Can the strengths of current static and dynamic models be unified in a single process
model that illuminates both the relative timing and quality of confidence computations?

2. How do the neural mechanisms underlying perceptual decision confidence operate
across different sensory modalities, confidence-mediated behaviors, and task contexts?

3. In some tasks, a parallel confidence computation appears to guide sensory evidence sam-
pling and integration. What is the neurophysiological substrate of this dynamic interplay
between decision formation and confidence assignment?

4. Researchers have proposed several coding schemes by which populations of sensory
neurons represent sensory uncertainty. Is there a mechanistic link between these prob-
abilistic representations of sensory information and the subjective feeling of decision
confidence?

5. How do neural representations of decision confidence guide changes in learning and
subsequent decisions in hierarchical tasks and strategic planning?

6. What is the circuit-level relation between metacognitive monitoring of perceptual
decision quality and action selection conflicts?
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